муниципальное бюджетное общеобразовательное учреждение «Школа № 8 имени Героя Советского Союза Н.А. Козлова» городского округа Самара

Рассмотрено

Председатель МО

Ник /Куропаткина Н.В./

Согласовано

Зам. директора по НМР

Тнутова О.А./

Buar 2018 r.

Утверждено

Приказ №140/УЧ от 29.08.2018 г. /

Директор МБОУ Школы № 8 Димест /Сажнов А.М./

M50V Wkona № 8 r.o. Cawapa

Shaharyn * Mil

РАБОЧАЯ ПРОГРАММА

учебного предмета «Химия»

класс: 8-9

Составитель: учитель химии МБОУ Школы № 8 г.о. Самара Гнутова Ольга Анатольевна

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа учебного предмета «Химия» на уровне основного общего образования составлена на основе:

- 1) «Федерального государственного стандарта основного общего образования» (Приказ Министерства образования и науки РФ от 17 декабря 2010 г. № 1897 «Об утверждении и введении в действие федерального государственного образовательного стандарта основного общего образования» в редакции Приказа Министерства образования и науки России от 29.12.2014 № 1644:
- 2) Основной образовательной программы основного общего образования МБОУ Школы № 8 г.о. Самара.
- 3) Программы основного общего образования по химии. 8-9 классы. О.С.Габриелян, А.В.Купцова. (Рабочие программы. Химия. 7—9 классы: учебно-методическое пособие / Т.Д. Гамбурцева. М.: Дрофа, 2015.)
 - 4) учебно-методического комплекса:
- Габриелян О. С. Химия. 8 класс: учебник для общеобразовательных учреждений / О.С.Габриелян. М.: Дрофа, 2015.
- Габриелян О. С. Химия. 9 класс: учебник для общеобразовательных учреждений / О.С.Габриелян. М.: Дрофа, 2015.

Овладение обучающимися системой химических знаний, умений и навыков необходимо в повседневной жизни для безопасного обращения с веществами, материалами и химическими процессами. Это помогает успешному изучению смежных дисциплин и способствует продолжению обучения в системе среднего профессионального и высшего образования. Немаловажную роль система химических знаний играет в современном обществе, так как химия и химические технологии (в том числе био- и нанотехнологии) превращаются в революционную производительную силу.

В соответствии с Федеральным государственным образовательным стандартом основного общего образования *главными целями* школьного химического образования являются:

- формирование у обучающихся системы химических знаний как компонента естественнонаучных знаний;
- развитие личности обучающихся, их интеллектуальных и нравственных качеств, формирование гуманистического отношения к окружающему миру и экологически целесообразного поведения в нем;
- понимание обучающимися химии как производительной силы общества и как возможной области будущей профессиональной деятельности;
- развитие мышления обучающихся посредством таких познавательных учебных действий, как умение формулировать проблему и гипотезу, ставить цели и задачи, строить планы достижения целей и решения поставленных задач, определять понятия, ораничивать их, описывать, характеризовать и сравнивать;
- понимание взаимосвязи теории и практики, умение проводить химический эксперимент и на его основе делать выводы и умозаключения.

Для достижения этих целей в курсе химии на уровне основного общего образования решаются следующие *задачи*:

- формируются знания основ химической науки основных фактов, понятий, химических законов и теорий, выраженных посредством химического языка;
- *развиваются умения* наблюдать и объяснять химические явления, происходящие в природе, лабораторных условиях, в быту и на производстве;
- *приобретаются специальные умения и навыки* по безопасному обращению с химическими веществами, материалами и процессами;
- формируется гуманистическое отношение к химии как производительной силе общества, с помощью которой решаются глобальные проблемы человечества;
- осуществляется интеграция химической картины мира в единую научную картину.

Изменения в программе.

В авторской программе О.С.Габриеляна практические работы сгруппированы в блоки – химические практикумы. В МБОУ Школе №8 практические работы проводятся по отдельности после прохождения соответствующих тем курса химии для лучшего закрепления знаний и контроля за уровнем их сформированности.

На изучение химии в МБОУ Школе №8 г.о. Самара отводится 170 часов: 102 ч (3 ч в неделю) в 8 классе 68 часов (2 ч в неделю) в 9 классе.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Личностные результаты.

У обучающегося будут сформированы:

- знание и понимание: основных исторических событий, связанных с развитием химии; достижений в области химии и культурных традиций своей страны (в том числе научных); общемировых достижений в области химии; основных принципов и правил отношения к природе; основ здорового образа жизни и здоровьесберегающих технологий; правил поведения в чрезвычайных ситуациях, связанных с воздействием различных веществ; основных прав и обязанностей гражданина (в том числе обучающегося), связанных с личностным, профессиональным и жизненным самоопределением; социальной значимости и содержания профессий, связанных с химией;
- *чувство гордости* за российскую химическую науку и достижения ученых; уважение и принятие достижений химии; любовь и бережное отношение к природе; уважение и учет мнений окружающих к личным достижениям в изучении химии;
- *признание* ценности собственного здоровья и здоровья окружающих людей; необходимости самовыражения, самореализации, социального признания;
- *осознание* степени готовности к самостоятельным поступкам и действиям, ответственности за их результаты;
- *проявление* экологического сознания, доброжелательности, доверия и внимательности к людям, готовности к сотрудничеству; инициативы и любознательности в изучении веществ и процессов; убежденности в необходимости разумного использования достижений науки и технологий;
- умение устанавливать связи между целью изучения химии и тем, для чего это нужно; строить жизненные и профессиональные планы с учетом успешности изучения химии и собственных приоритетов.

Метапредметные результаты.

- *использовать* различные источники химической информации; получать такую информацию, ее анализировать;
- *применять* основные методы познания (наблюдения, эксперимента, моделирования, измерения и т. д.) для изучения химических объектов;
- *использовать* основные логические операции (анализ, синтез, сравнение, обобщение, доказательство, систематизация, классификация и др.) при изучении химических объектов;
- формулировать выводы и умозаключения из наблюдений и изученных химических закономерностей;
- *прогнозировать* свойства веществ на основе знания их состава и строения, а также установления аналогии;
- формулировать идеи, гипотезы и пути проверки их истинности;
- *определять* цели и задачи учебной и исследовательской деятельности и пути их достижения;
- *раскрывать* причинно-следственные связи между составом, строением, свойствами, применением, нахождением в природе и получением важнейших химических веществ;
- *аргументировать* собственную позицию и ее корректировать в ходе дискуссии по материалам химического содержания.

Предметные результаты.

8 класс Раздел «Введение»

Обучающийся научится:

- использовать при характеристике веществ понятия «атом», «молекула», «химический элемент», «химический знак, или символ», «вещество», «простое вещество», «сложное вещество», «свойства веществ», «химические явления», «физические явления», «коэффициенты», «индексы», «относительная атомная масса», «относительная молекулярная масса», «массовая доля элемента»; знать предметы изучения естественнонаучных дисциплин, в том числе химии; химические символы (A1, Ag, C, Ca, Cl, Cu, Fe, H, K, N, Mg, Na, O, P, S, Si, Zn), их названия и произношение;
- классифицировать вещества по составу на простые и сложные;
- различать тела и вещества, химический элемент и простое вещество;
- описывать формы существования химических элементов (свободные атомы, простые вещества, сложные вещества); табличную форму Периодической системы химических элементов; положение элемента в таблице Д. И. Менделеева, используя понятия «период», «группа», «главная подгруппа», «побочная подгруппа»; свойства веществ (твердых, жидких, газообразных);
- объяснять сущность химических явлений (с точки зрения атомно-молекулярного учения) и их принципиальное отличие от физических явлений;
- характеризовать основные методы изучения естественных дисциплин (наблюдение, эксперимент, моделирование); вещество по его химической формуле согласно плану: качественный состав, тип вещества (простое или сложное), количественный состав, относительная молекулярная масса, соотношение масс элементов в веществе, массовые доли элементов в веществе (для сложных веществ); роль химии (положительную и отрицательную) в жизни человека, аргументировать свое отношение к этой проблеме;
- вычислять относительную молекулярную массу вещества и массовую долю химического элемента в соединениях;
- проводить наблюдения свойств веществ и явлений, происходящих с веществами;
- соблюдать правила техники безопасности при проведении наблюдений и лабораторных опытов.

Обучающийся получит возможность научится:

осознавать значение теоретических знаний по химии для практической деятельности человека;

Раздел «Атомы химических элементов»

- использовать при характеристике атомов понятия «протон», «нейтрон», «электрон», «химический элемент», «массовое число», «изотоп», «электронный слой», «энергетический уровень», «элементы-металлы», «элементы-неметаллы»; при характеристике веществ понятия «ионная связь», «ионы», «ковалентная неполярная связь», «ковалентная полярная связь», «электроотрицательность», «валентность», «металлическая связь»;
- описывать состав и строение атомов элементов с порядковыми номерами 1-20 в Периодической системе химических элементов Д. И. Менделеева;
- составлять схемы распределения электронов по электронным слоям в электронной оболочке атомов; схемы образования разных типов химической связи (ионной, ковалентной, металлической);
- объяснять закономерности изменения свойств химических элементов (зарядов ядер атомов, числа электронов на внешнем электронном слое, число заполняемых электронных слоев, радиус атома, электроотрицательность, металлические и неметаллические свойства) в периодах и группах (главных подгруппах) Периодической системы химических элементов Д.И.Менделеева с точки зрения теории строения атома;
- сравнивать свойства атомов химических элементов, находящихся в одном периоде или главной подгруппе Периодической системы химических элементов Д. И. Менделеева (зарядов ядер атомов, числа электронов на внешнем электронном слое, число заполняемых электронных слоев, радиус атома, электроотрицательность, металлические и неметаллические свойства);
- давать характеристику химических элементов по их положению в Периодической системе

химических элементов (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома - заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям);

- определять тип химической связи по формуле вещества;
- характеризовать механизмы образования ковалентной (обменной), ионной, металлической связей;
- устанавливать причинно-следственные связи: состав вещества-тип химической связи;
- приводить примеры веществ с разными типами химической связи;

Обучающийся получит возможность научится:

- находить валентность элементов по формуле бинарного соединения.
- составлять формулы бинарных соединений по валентности;
- •описывать изученные объекты как системы, применяя логику системного анализа;
- применять знания о закономерностях периодической системы химических элементов для объяснения и предвидения свойств конкретных веществ;
- развивать информационную компетентность посредством углубления знаний об истории становления химической науки, её основных понятий, периодического закона как одного из важнейших законов природы, а также о современных достижениях науки и техники.

Раздел «Простые вещества»

Обучающийся научится:

- использовать при характеристике веществ понятия «металлы», «пластичность», «теплопроводность», «электропроводность», «неметаллы», «аллотропия», «аллотропные видоизменения, или модификации»;
- описывать положение элементов-металлов и элементов-неметаллов в Периодической системе химических элементов Д. И. Менделеева;
- классифицировать простые вещества на металлы и неметаллы, элементы;
- определять принадлежность неорганических веществ к одному из изученных классов металлов и неметаллов;
- характеризовать общие физические свойства металлов;
- объяснять многообразие простых веществ таким фактором, как аллотропия;
- соблюдать правила техники безопасности при проведении наблюдений и лабораторных опытов;
- использовать при решении расчетных задач понятия «количество вещества», «моль», «постоянная Авогадро», «молярная масса», «молярный объем газов», «нормальные условия»;
- проводить расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Обучающийся получит возможность научится:

- доказывать относительность деления простых веществ на металлы и неметаллы;
- устанавливать причинно-следственные связи между строением атома и химической связью в простых веществах металлах и неметаллах;
- описывать свойства веществ (на примерах простых веществ металлов и неметаллов);

Раздел «Соединения химических элементов»

- использовать при характеристике веществ понятия «степень окисления», «валентность», «оксиды», «основания», «щелочи», «качественная реакция», «индикатор», «кислоты», «кислородсодержащие кислоты», «бескислородные кислоты», «кислотная среда», «щелочная среда», «нейтральная среда», «шкала рН», «соли», «аморфные вещества», «кристаллические вещества», «кристаллическая решетка», «ионная кристаллическая решетка», «атомная кристаллическая решетка», «металлическая кристаллическая решетка», «смеси»;
- классифицировать сложные неорганические вещества по составу на оксиды, основания, кислоты и соли; основания, кислоты и соли по растворимости в воде; кислоты по основности

и содержанию кислорода;

- определять принадлежность неорганических веществ к одному из изученных классов (оксиды, летучие водородные соединения, основания, кислоты, соли) по формуле;
- описывать свойства отдельных представителей оксидов (на примере воды, углекислого газа, негашеной извести), летучих водородных соединений (на примере хлороводорода и аммиака), оснований (на примере гидроксидов натрия, калия и кальция), кислот (на примере серной кислоты) и солей (на примере хлорида натрия, карбоната кальция, фосфата кальция);
- определять степень окисления элементов в веществах;
- составлять формулы оксидов, оснований, кислот и солей по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- составлять названия оксидов, оснований, кислот и солей;
- использовать таблицу растворимости для определения растворимости веществ;
- устанавливать генетическую связь между оксидом и гидроксидом и наоборот; причинноследственные связи между строением атома, химической связью и типом кристаллической решетки химических соединений;
- приводить примеры веществ с разными типами кристаллической решетки;
- проводить наблюдения за свойствами веществ и явлениями, происходящими с веществами;
- соблюдать правила техники безопасности при проведении наблюдений и опытов;
- экспериментально различать кислоты и щелочи, пользуясь индикаторами;
- использовать при решении расчетных задач понятия «массовая доля элемента в веществе», «массовая доля растворенного вещества», «объемная доля газообразного вещества»;
- проводить расчеты с использованием понятий «массовая доля элемента в веществе», «массовая доля растворенного вещества», «объемная доля газообразного вещества».

Обучающийся получит возможность научится:

- определять валентность элементов в веществах
- сравнивать валентность и степень окисления; оксиды, основания, кислоты и соли по составу;
- характеризовать атомные, молекулярные, ионные металлические кристаллические решетки; среду раствора с помощью шкалы рН;
- исследовать среду раствора с помощью индикаторов;

Раздел «Изменения, происходящие с веществами»

- использовать при характеристике веществ понятия «дистилляция», «перегонка», «кристаллизация», «выпаривание», «фильтрование», «возгонка, или сублимация», «отстаивание», «центрифугирование», «химическая реакция», «химическое уравнение», «реакции соединения», «реакции разложения», «реакции обмена», «реакции замещения», «реакции нейтрализации», «экзотермические реакции», «эндотермические реакции», «реакции горения», «катализаторы», «ферменты», «обратимые реакции», «необратимые реакции», «каталитические реакции», «некаталитические реакции», «ряд активности металлов», «гидролиз»;
- устанавливать причинно-следственные связи между физическими свойствами веществ и способом разделения смесей;
- объяснять закон сохранения массы веществ с точки зрения атомно-молекулярного учения;
- составлять уравнения химических реакций на основе закона сохранения массы веществ;
- описывать реакции с помощью естественного (русского или родного) языка и языка химии;
- классифицировать химические реакции по числу и составу исходных веществ и продуктов реакции; тепловому эффекту; направлению протекания реакции; участию катализатора;
- использовать таблицу растворимости для определения возможности протекания реакций обмена; электрохимический ряд напряжений (активности) металлов для определения возможности протекания реакций между металлами и водными растворами кислот и солей;
- наблюдать и описывать признаки и условия течения химических реакций, делать выводы на основании анализа наблюдений за экспериментом;
- проводить расчеты по химическим уравнениям на нахождение количества, массы или объема

продукта реакции по количеству, массе или объему исходного вещества; с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

- классифицировать химические реакции по изменению степеней окисления элементов, образующих реагирующие вещества;
- составлять уравнения электролитической диссоциации кислот, оснований и солей; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов; уравнения окислительно-восстановительных реакций, используя метод электронного баланса; уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- определять окислитель и восстановитель, окисление и восстановление в окислительно-восстановительных реакциях;
- проводить опыты, подтверждающие химические свойства основных классов неорганических веществ.

Обучающийся получит возможность научится:

• устанавливать причинно-следственные связи: класс вещества - химические свойства вещества; наблюдать и описывать реакции между электролитами с помощью естественного (русского или родного) языка и языка химии;

Раздел «Практикум »

Обучающийся научится:

- обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;
- выполнять простейшие приемы обращения с лабораторным оборудованием: лабораторным штативом, спиртовкой;
- наблюдать за свойствами веществ и явлениями, происходящими с веществами;
- описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;
- делать выводы по результатам проведенного эксперимента.

9 КЛАСС

Раздел «Общая характеристика химических элементов и химических реакций»

Обучающийся научится:

- использовать при характеристике превращений веществ понятия «химическая реакция», «реакции соединения», «реакции разложения», «реакции обмена», «реакции замещения», «реакции нейтрализации», «экзотермические реакции», «эндотермические реакции», «обратимые реакции», «окислительно-восстановительные реакции»;
- характеризовать общие химические свойства амфотерных оксидов и гидроксидов;
- приводить примеры реакций, подтверждающих химические свойства амфотерных оксидов и гидроксидов;
- давать характеристику химических реакций по числу и составу исходных веществ и продуктов реакции, а также тепловому эффекту; направлению протекания реакции; изменению степеней окисления элементов; агрегатному состоянию исходных веществ; участию катализатора;
- объяснять и приводить примеры влияния некоторых факторов (природа реагирующих веществ, концентрация веществ, давление, температура, катализатор, поверхность соприкосновения реагирующих веществ) на скорость химических реакций;
- наблюдать и описывать уравнения реакций между веществами с помощью естественного (русского или родного) языка и языка химии;

Обучающийся получит возможность научится:

• проводить опыты, подтверждающие химические свойства амфотерных оксидов и гидроксидов; зависимость скорости химической реакции от различных факторов (природа реагирующих веществ, концентрация веществ, давление, температура, катализатор, поверхность соприкосно-

Раздел «Металлы»

Обучающийся научится:

- использовать при характеристике металлов и их соединений понятия «металлы», «ряд активности металлов», «щелочные металлы», «щелочноземельные металлы», использовать их при характеристике металлов;
- давать характеристику химических элементов-металлов (щелочных металлов, магния, кальция, алюминия, железа) по их положению в Периодической системе химических элементов Д. И. Менделеева (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома: заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям; простое вещество, формула, название и тип высшего оксида и гидроксида);
- называть соединения металлов и составлять их формулы по названию;
- характеризовать строение, общие физические и химические свойства простых веществметаллов;
- описывать общие химические свойства металлов с помощью естественного (русского или родного) языка и языка химии;
- составлять молекулярные уравнения реакций, характеризующих химические свойства металлов и их соединений, а также электронные уравнения процессов окисления-восстановления;
- составлять уравнения электролитической диссоциации; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов;
- описывать химические свойства щелочных и щелочноземельных металлов, а также алюминия и железа и их соединений с помощью естественного (русского или родного) языка и языка химии;
- выполнять, наблюдать и описывать химический эксперимент по распознаванию важнейших катионов металлов, гидроксидионов;
- экспериментально исследовать свойства металлов и их соединений, решать экспериментальные задачи по теме «Металлы»;
- описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;
- проводить расчеты по химическим формулам и уравнениям реакций, протекающих с участием металлов и их соединений.

Обучающийся получит возможность научится:

- объяснять зависимость свойств (или предсказывать свойства) химических элементовметаллов (радиус, металлические свойства элементов, окислительно-восстановительные свойства элементов) и образуемых ими соединений (кислотно-основные свойства высших оксидов и гидроксидов, окислительно-восстановительные свойства) от положения в Периодической системе химических элементов Д. И. Менделеева;
- устанавливать причинно-следственные связи между строением атома, химической связью, типом кристаллической решетки металлов и их соединений, их общими физическими и химическими свойствами;

Раздел «Неметаллы»

- использовать при характеристике металлов и их соединений понятия «неметаллы», «галогены», «аллотропные видоизменения»;
- давать характеристику химических элементов-неметаллов (водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния) по их положению в Периодической системе химических элементов Д. И. Менделеева (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома: заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям; простое вещество, формула, название и тип высшего оксида и гидроксида, формула и характер летучего

водородного соединения);

- называть соединения неметаллов и составлять их формулы по названию;
- характеризовать строение, общие физические и химические свойства простых веществнеметаллов;
- описывать общие химические свойства неметаллов с помощью естественного (русского или родного) языка и языка химии;
- составлять молекулярные уравнения реакций, характеризующих химические свойства неметаллов и их соединений, а также электронные уравнения процессов окисления-восстановления;
- уравнения электролитической диссоциации; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов;
- описывать химические свойства водорода, галогенов, кислорода, серы, азота, фосфора, графита, алмаза, кремния и их соединений с помощью естественного (русского или родного) языка и языка химии;
- описывать способы устранения жесткости воды и выполнять соответствующий им химический эксперимент;
- выполнять, наблюдать и описывать химический эксперимент по распознаванию ионов водорода и аммония, сульфат-, карбонат-, силикат-, фосфат-, хлорид-, бромид-, иодид-ионов;
- экспериментально исследовать свойства металлов и их соединений, решать экспериментальные задачи по теме «Неметаллы»;
- описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;
- проводить расчеты по химическим формулам и уравнениям реакций, протекающих с участием неметаллов и их соединений.

Обучающийся получит возможность научится:

- использовать при характеристике металлов и их соединений понятия «жесткость воды», «временная жесткость воды», «постоянная жесткость воды», «общая жесткость воды»;
- объяснять зависимость свойств (или предсказывать свойства) химических элементовнеметаллов (радиус, неметаллические свойства элементов, окислительно-восстановительные свойства элементов) и образуемых ими соединений (кислотно-основные свойства высших оксидов и гидроксидов, летучих водородных соединений, окислительно-восстановительные свойства) от положения в Периодической системе химических элементов Д. И. Менделеева;
- устанавливать причинно-следственные связи между строением атома, химической связью, типом кристаллической решетки неметаллов и их соединений, их общими физическими и химическими свойствами

Раздел «Практикум »

- обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;
- наблюдать за свойствами неметаллов и их соединений и явлениями, происходящими с ними;
- описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;
- делать выводы по результатам проведенного эксперимента.

СОДЕРЖАНИЕ

8 КЛАСС

Введение

Предмет химии. Методы познания в химии. Источники химической информации и способы ее получения.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных веществах.

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека.

Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия в XVI в. Развитие химии на Руси. Роль отечественных ученых в становлении химической науки - работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

Расчетные задачи. 1. Нахождение относительной молекулярной массы вещества по его химической формуле. 2. Вычисление массовой доли химического элемента в веществе по его формуле.

Практическая работа № 1. Правила техники безопасности при работе в химическом кабинете. Приемы обращения с лабораторным оборудованием и нагревательными приборами.

Тема 1. Атомы химических элементов

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса». Изменение числа протонов в ядре атома - образование новых химических элементов. Изменение числа нейтронов в ядре атома - образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных оболочек атомов химических элементов №1-20 периодической системы Д. И. Менделеева. Понятие о завершенном и незавершенном электронном слое (энергетическом уровне).

Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента - образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах. Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи.

Взаимодействие атомов химических элементов-неметаллов между собой - образование бинарных соединений неметаллов. Ковалентная неполярная химическая связь. Электронные и структурные формулы.

Взаимодействие атомов химических элементов-неметаллов между собой - образование бинарных соединений неметаллов. Электроотрицательность. Понятие о ковалентной полярной связи. Понятие о валентности как свойстве атомов образовывать ковалентные химические связи. Нахождение валентности по формуле бинарного соединения.

Взаимодействие атомов химических элементов-металлов между собой - образование металлических кристаллов. Понятие о металлической связи.

Демонстрации. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева.

Тема 2. Простые вещества

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества - металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов.

Важнейшие простые вещества - неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Способность атомов химических элементов к образованию нескольких простых веществ - аллотропия. Аллотропные модификации кислорода, фосфора и олова. Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы.

Число Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Расчетные задачи. 1. Вычисление молярной массы веществ по химическим формулам. 2. Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро». **Демонстрации.** Некоторые металлы и неметаллы количеством вещества 1 моль. Модель молярного объема газообразных веществ.

Тема 3. Соединения химических элементов

Степень окисления. Сравнение степени окисления и валентности. Определение степени окисления элементов в бинарных соединениях. Составление формул бинарных соединений, общий способ их называния.

Бинарные соединения металлов и неметаллов: оксиды, хлориды, сульфиды и др. Составление их формул.

Бинарные соединения неметаллов: вода, углекислый газ и негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие о качественных реакциях. Индикаторы.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Изменение окраски индикаторов в кислотной среде. Понятие о шкале кислотности.

Соли как производные кислот и оснований, их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества.

Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия «доля».

Расчетные задачи. 1. Расчет массовой и объемной долей компонентов смеси веществ. 2. Вычисление массовой доли вещества в растворе по известной массе растворенного вещества и массе растворителя. 3. Вычисление массы растворяемого вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества.

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Взрыв смеси водорода с воздухом. Способы разделения смесей, дистилляция воды.

Практическая работа № 2. Приготовление раствора сахара и определение массовой доли его в растворе.

Тема 4. Изменения, происходящие с веществами

Понятие явлений как изменений, происходящих с веществами.

Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование.

Явления, связанные с изменением состава вещества, - химические реакции. Признаки и условия протекания химических реакций. Понятие об экзо- и эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Понятие о скорости химических реакций. Катализаторы. Ферменты. Реакции соединения. Каталитические и некаталитические реакции. Обратимые и необратимые реакции.

Реакции замещения. Электрохимический ряд напряжений металлов, его использование для прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами. Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца.

Типы химических реакций на примере свойств воды. Реакция разложения - электролиз воды. Реакции соединения - взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды». Реакции замещения - взаимодействие воды с щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

Расчетные задачи. 1. Вычисление по химическим уравнениям массы или количества вещества по известной массе или количеству вещества одного из вступающих в реакцию веществ или продуктов реакции. 2. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей. 3. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса раствора массовая доля растворенного вешества. Демонстрации. Примеры физических явлений; а) плавление парафина; б) растворение перманганата калия; в) диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II); г) растворение полученного гидроксида в кислотах;

д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) взаимодействие разбавленных кислот с металлами; з) разложение пероксида водорода.

Лабораторные опыты. 4. Окисление меди в пламени спиртовки или горелки. 5. Помутнение известковой воды от выдыхаемого углекислого газа. 6. Получение углекислого газа взаимодействием соды и кислоты. 7. Замещение меди в растворе хлорида меди (II) железом.

Практическая работа № 3. Признаки химических реакций.

Тема 5. Растворение. Растворы. Свойства растворов электролитов

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства.

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями - реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотами, кислотными оксидами и солями. Использование таблицы растворимости для характеристики химических свойств оснований. Разложение нерастворимых оснований при нагревании.

Соли, их классификация и диссоциация различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и химических свойствах. Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ.

Демонстрации. Испытание веществ и их растворов на электропроводность. Зависимость электропроводности уксусной кислоты от концентрации. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния.

Лабораторные опыты. 8. Реакции, характерные для растворов кислот (соляной или серной). 9. Реакции, характерные для растворов щелочей (гидроксидов натрия или калия). 10. Получение и свойства нерастворимого основания, например гидроксида меди (II). 11. Реакции, характерные для растворов солей (например, для хлорида меди (II)). 12. Реакции, характерные для основных оксидов (например, для оксида кальция). 13. Реакции, характерные для кислотных оксидов (например, для углекислого газа).

Практическая работа № 4. Условия протекания химических реакций между растворами электролитов до конца

Практическая работа № 5. Ионные реакции

Практическая работа № 6. Решение экспериментальных задач.

Тема 6. Окислительно-восстановительные реакции

Окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ - металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.

Тема 8. Повторение и обобщение основных вопросов курса химии 8 класса (8 ч)

9 КЛАСС

Введение. Общая характеристика химических элементов и химических реакций. Периодический закон и Периодическая система химических элементов Д. И. Менделеева

Характеристика элемента по его положению в Периодической системе химических элементов Д. И. Менделеева. Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и окисления-восстановления.

Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента. Периодический закон и Периодическая система химических элементов Д. И. Менделеева.

Химическая организация живой и неживой природы. Химический состав ядра, мантии и земной коры. Химические элементы в клетках живых организмов. Макро- и микроэлементы.

Обобщение сведений о химических реакциях. Классификация химических реакций по различным признакам: «число и состав реагирующих и образующихся веществ», «тепловой эффект», «направление», «изменение степеней окисления элементов, образующих реагирующие вещества», «фаза», «использование катализатора».

Понятие о скорости химической реакции. Факторы, влияющие на скорость химических реакций. Катализаторы и катализ. Ингибиторы. Антиоксиданты.

Демонстрации. Различные формы таблицы Д. И. Менделеева. Модели атомов элементов 1—3-го периодов. Модель строения земного шара (поперечный разрез). Зависимость скорости химической реакции от природы реагирующих веществ. Зависимость скорости химической реакции от концентрации реагирующих веществ. Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ («кипящий слой»). Зависимость скорости химической реакции от температуры реагирующих веществ. Гомогенный и гетерогенный катализы. Ферментативный катализ. Ингибирование.

Лабораторные опыты. 1. Получение гидроксида цинка и исследование его свойств. 2. Моделирование построения Периодической системы химических элементов Д. И. Менделеева. 3. Замещение железом меди в растворе сульфата меди (II). 4. Зависимость скорости химической реакции от природы реагирующих веществ на примере взаимодействия кислот с металлами. 5. Зависимость скорости химической реакции от концентрации реагирующих веществ на примере взаимодействия цинка с соляной кислотой различной концентрации. 6. Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ. 7. Моделирование «кипящего слоя». 8. Зависимость скорости химической реакции от температуры реагирующих веществ на примере взаимодействия оксида меди (II) с раствором серной кислоты различной температуры. 9. Разложение пероксида водорода с помощью оксида марганца (IV) и каталазы. 10. Обнаружение каталазы в некоторых пищевых продуктах. И. Ингибирование взаимодействия кислот с металлами уротропином.

Тема 1. Металлы

Положение металлов в периодической системе химических элементов Д. И. Менделеева. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов. Сплавы, их свойства и значение. Химические свойства металлов как восстановителей. Электрохимический ряд напряжений металлов и его использование для характеристики химических свойств конкретных металлов. Способы получения металлов. Коррозия металлов и способы борьбы с ней.

Общая характеристика щелочных металлов. Металлы в природе. Общие способы их получения. Строение атомов. Щелочные металлы — простые вещества, их физические и химические свойства. Важнейшие соединения щелочных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, сульфаты, нитраты), их свойства и применение в народном хозяйстве. Калийные удобрения.

Общая характеристика элементов главной подгруппы II группы. Строение атомов. Щелочноземельные металлы — простые вещества, их физические и химические свойства. Важнейшие соединения щелочноземельных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, нитраты, сульфаты и фосфаты), их свойства и применение в народном хозяйстве.

Алюминий. Строение атома, физические и химические свойства простого вещества.

Соединения алюминия — оксид и гидроксид, их амфотерный характер. Важнейшие соли алюминия. Применение алюминия и его соединений.

Железо. Строение атома, физические и химические свойства простого вещества. Генетические ряды Fe^{2+} и Fe^{3+} . Качественные реакции на Fe^{2+} и Fe^{3+} . Важнейшие соли железа. Значение железа, его соединений и сплавов в природе и народном хозяйстве.

Демонстрации. Образцы щелочных и щелочноземельных металлов. Образцы сплавов. Взаимодействие натрия, лития и кальция с водой. Получение гидроксидов железа (II) и (III).

Лабораторные опыты. 2. Ознакомление с образцами металлов. 3. Взаимодействие металлов с растворами кислот и солей. 4. Ознакомление с образцами природных соединений: а) натрия; б) кальция; в) алюминия; г) железа. 5. Получение гидроксида алюминия и его взаимодействие с растворами кислот и щелочей. 6. Качественные реакции на ионы Fe^{2+} и Fe^{3+} .

Практические работы. 1. Осуществление цепочки химических превращений. 2. Получение и свойства соединений металлов. 3. Экспериментальные задачи по распознаванию и получению веществ.

Тема 2. Неметаллы

Общая характеристика неметаллов: положение в периодической системе Д. И. Менделеева, особенности строения атомов, электроотрицательность как мера «неметалличности», ряд электроотрицательности. Кристаллическое строение неметаллов — простых веществ. Аллотропия. Физические свойства неметаллов. Относительность понятий «металл», «неметалл».

Водород. Положение в периодической системе химических элементов Д. И. Менделеева. Строение атома и молекулы. Физические и химические свойства водорода, его получение и применение.

Вода. Строение молекулы. Водородная химическая связь. Физические свойства воды. Аномалия строения воды. Гидрофильные и гидрофобные вещества. Химические свойства воды. Круговорот воды в природе. Водоочистка. Аэрация воды. Бытовые фильтры. Минеральные воды. Дистиллированная вод, ее получение и применение.

Общая характеристика галогенов. Строение атомов. Простые вещества, их физические и химические свойства. Основные соединения галогенов (галогеноводороды и галогениды), их свойства. Качественная реакция на хлорид-ион. Краткие сведения о хлоре, броме, фторе и иоде. Применение галогенов и их соединений в народном хозяйстве.

Сера. Строение атома, аллотропия, свойства и применение ромбической серы. Оксиды серы (IV) и (VI), их получение, свойства и применение. Сероводородная и сернистая кислоты. Серная кислота и ее соли, их применение в народном хозяйстве. Качественная реакция на сульфат-ион.

Азот. Строение атома и молекулы, свойства простого вещества. Аммиак, строение, свойства, получение и применение. Соли аммония, их свойства и применение. Оксиды азота (II) и (IV). Азотная кислота, ее свойства и применение. Нитраты и нитриты, проблема их содержания в сельскохозяйственной продукции. Азотные удобрения.

Фосфор. Строение атома, аллотропия, свойства белого и красного фосфора, их применение. Основные соединения: оксид фосфора (V), ортофосфорная кислота и фосфаты. Фосфорные удобрения.

Углерод. Строение атома, аллотропия, свойства аллотропных модификаций, применение. Оксиды углерода (II) и (IV), их свойства и применение. Качественная реакция на углекислый газ. Карбонаты: кальцит, сода, поташ, их значение в природе и жизни человека. Качественная реакция на карбонат-ион.

Кремний. Строение атома, кристаллический кремний, его свойства и применение. Оксид кремния (IV), его природные разновидности. Силикаты. Значение соединений кремния в живой и неживой природе. Понятие о силикатной промышленности.

Демонстрации. Образцы галогенов — простых веществ. Взаимодействие серы с металлами, кислородом.

Взаимодействие концентрированной азотной кислоты с медью.

Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида

углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

Лабораторные опыты. 7. Качественная реакция на хлорид-ион. 8. Качественная реакция на сульфат-ион. 9. Распознавание солей аммония. 10. Получение углекислого газа и его распознавание. 11. Качественная реакция на карбонат-ион. 12. Ознакомление с природными силикатами. 13. Ознакомление с продукцией силикатной промышленности.

Практические работы. 4. Решение экспериментальных задач по теме «Подгруппа кислорода». 5. Получение аммиака и изучение его свойств. 6. Экспериментальные задачи по теме «Подгруппа азота и углерода».

Тема 5. Обобщение знаний по химии за курс основной школы. Подготовка к государственной итоговой аттестации (ГИА)

Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Физический смысл порядкового номера элемента, номеров периода и группы. Закономерности изменения свойств элементов и их соединений в периодах и группах в свете представлений о строении атомов элементов. Значение Периодического закона.

Виды химических связей и типы кристаллических решеток. Взаимосвязь строения и свойств веществ.

Классификация химических реакций по различным признакам (число и состав реагирующих и образующихся веществ; наличие границы раздела фаз; тепловой эффект; изменение степеней окисления атомов; использование катализатора; направление протекания). Скорость химических реакций и факторы, влияющие на нее. Обратимость химических реакций и способы смещения химического равновесия.

Простые и сложные вещества. Металлы и неметаллы. Генетические ряды металла, неметалла и переходного металла. Оксиды и гидроксиды (основания, кислоты, амфотерные гидроксиды),

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 8 КЛАСС (102 ч, 3 ч в неделю)

No	Название темы	Количество часов
1	Введение	10
2	Атомы химических элементов	14
3	Простые вещества	10
4	Соединения химических элементов	17
5	Изменения, происходящие с веществами	16
6	Растворы. Реакции ионного обмена	21
7	Окислительно-восстановительные реакции	6
8	Обобщение и повторение курса химии 8 класса	8

9 КЛАСС (68 ч, 2 ч в неделю)

No	Название темы	Количество часов
1	Введение. Общая характеристика химических элементов и	10
	химических реакций. Периодический закон и периодическая система	
	химических элементов Д.И.Менделеева	
2	Металлы	16
3	Неметаллы	32
4	Обобщение знаний по химии за курс основной школы.	10
	Подготовка к Государственной итоговой аттестации	
	(ГИА)	